Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3'-Dimethyl-1,1'-(propane-1,3-diyl)diimidazol-1-ium bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Shan-Shan Yu,^a Hai-Bao Duan^{b*} and Xiao-Ming Ren^c

^aDepartment of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China, ^bSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China, and ^cCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: duanhaibao4660@163.com

Received 4 June 2011; accepted 11 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.101; data-to-parameter ratio = 20.0.

In the title compound, $(C_{11}H_{18}N_4)[Ni(C_4N_2S_2)_2]$, the asymmetric contains one half-complex, with the cation placed on a twofold axis and the anion located on an inversion center. The Ni^{II} ion in the anion is coordinated by four S atoms of two maleonitriledithiolate ligands, and exhibits the expected square-planar coordination geometry.

Related literature

For the design of functional materials, see: Robertson & Cronin (2002). For near-infrared dyes, conducting, magnetic and non-linear optical materials, see: Nishijo *et al.* (2000); Ni *et al.* (2005). For related structures, see: Ni *et al.* (2004); Ren *et al.* (2004, 2008); Duan *et al.* (2010); For the synthesis of the title compound, see: Davison & Holm (1967); Yao *et al.* (2008).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\rm min} = 0.702, T_{\rm max} = 0.741$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.101$ S = 1.062938 reflections 7551 measured reflections 2938 independent reflections 2503 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$

147 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.31\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.68\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of High Learning Institutions of Abhui Province, China for financial support (grant Nos. KJ2009B275Z).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2362).

References

- Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davison, A. & Holm, R. H. (1967). Inorg. Synth. 10, 8-26.
- Duan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509– 1522.
- Ni, C. L., Dang, D. B., Song, Y., Gao, S., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). *Chem. Phys. Lett.* **396**, 353–358.
- Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.
- Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2000). *Solid State Commun.* **116**, 661–664.
- Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). *Inorg. Chem.* **43**, 2569–2576.
- Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009–8014.
- Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833–2844.

supplementary materials

Acta Cryst. (2011). E67, m1117 [doi:10.1107/S1600536811027693]

3,3'-Dimethyl-1,1'-(propane-1,3-diyl)diimidazol-1-ium $\kappa^2 S,S'$)nickelate(II)

bis(1,2-dicyanoethene-1,2-dithiolato-

S.-S. Yu, H.-B. Duan and X.-M. Ren

Comment

Supramolecular chemistry and molecular crystal engineering, which is the planning and utilization of crystal-oriented syntheses for the bottom-up construction of functional molecular solids from molecules and ions, are powerful tools for the assembly of designed functional materials (Robertson & Cronin, 2002). The use of bis-1,2-dithiolene complexes of transition metals as building units in the construction of such molecule based materials has received extensive attention due to their potential applications in the areas of near-infrared (near-IR) dyes, conducting, magnetic and nonlinear optical materials (Nishijo *et al.*, 2000; Ni *et al.*, 2005). Herein we report the crystal structure of the title compound (Fig. 1), which belongs to this class of materials.

The compound crystallizes in monoclinic system, with one half of $[Ni(mnt)_2]^{2-}$ dianion (*mnt* = maleonitriledithiolate) and one half of 3,3-dimethyl-1,1-(propane-1,3-diyl)diimidazol-1-ium dication in the asymmetric unit. The Ni center in the $[Ni(mnt)_2]^{2-}$ anion is coordinated by four S atoms of two *mnt*²⁻ ligands, and exhibits the expected square-planar coordination geometry. The bond lengths and angles in the anion are in good agreement with those observed in other $[Ni(mnt)_2]^{2-}$ complexes (Ni *et al.*, 2004; Ren *et al.*, 2008; Duan *et al.*, 2010).

Experimental

All reagents and chemicals were purchased from commercial sources and used without further purification. The starting materials disodium maleonitriledithiolate and 1-methyl-3-(3-(1-methyl-imidazole-3-yl)propyl)-imidazolinium iodide were synthesized following the literature procedures (Davison & Holm, 1967; Yao *et al.*, 2008). Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) at room temperature. Subsequently, a solution of 1-methyl-3-(3-(1-methyl-imidazole-3-yl)propyl)-imidazolinium iodide (1.5 mmol) in methanol (10 ml) was added to the mixture, and the red precipitate that immediately formed was filtered off, and washed with methanol. The crude product was recrystallized in acetone (20 ml) to give red block crystals.

Refinement

The C-bound H atoms were placed in geometrically idealized positions with C—H bond lengths fixed to 0.97 (methylene CH₂) 0.96 (methyl CH₃), and 0.93 Å (aromatic CH), and refined as riding atoms. Isotropic displacement parameters of the H atom were set at $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene and aromatic H atoms, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.

3,3'-Dimethyl-1,1'-(propane-1,3-diyl)diimidazol-1-ium bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S$,S')nickelate(II)

Crystal data
(C ₁₁ H ₁₈ N ₄)[Ni(C ₄ N ₂ S ₂) ₂]
$M_r = 545.38$
Monoclinic, C2/c
Hall symbol: -C 2yc
<i>a</i> = 19.3683 (15) Å
<i>b</i> = 7.3026 (6) Å
c = 17.5170 (14) Å
$\beta = 104.167 (1)^{\circ}$
$V = 2402.2 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	2938 independent reflections
Radiation source: fine-focus sealed tube	2503 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.067$
φ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999)	$h = -19 \rightarrow 25$
$T_{\min} = 0.702, \ T_{\max} = 0.741$	$k = -8 \rightarrow 9$
7551 measured reflections	$l = -23 \rightarrow 16$

Refinement

Refinement on F^2 Primary atom s
methodsLeast-squares matrix: fullSecondary aton
Hydrogen site
sites $R[F^2 > 2\sigma(F^2)] = 0.037$ Hydrogen site
sites $wR(F^2) = 0.101$ H-atom parameter
 $w = 1/[\sigma^2(F_o^2)]$
where $P = (F_o^2)$
where $P = (F_o^2)$
2938 reflections2938 reflections $(\Delta/\sigma)_{max} < 0.00$
 $\Delta\rho_{max} = 0.31$ e
0 restraints

Z = 4 F(000) = 1120.0 $D_x = 1.508 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 1.18 \text{ mm}^{-1}$ T = 293 K Block, red $0.4 \times 0.3 \times 0.3 \text{ mm}$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 + 0.2056P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.68$ e Å⁻³

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni1	0.2500	0.7500	0.0000	0.03604 (12)	
S1	0.34431 (2)	0.65936 (7)	0.08669 (3)	0.04682 (15)	
S2	0.18479 (2)	0.72779 (7)	0.08353 (3)	0.04539 (14)	
N1	0.40853 (10)	0.5664 (3)	0.29918 (11)	0.0762 (6)	
N2	0.19161 (11)	0.6190 (3)	0.28956 (11)	0.0698 (5)	
N3	0.61640 (10)	0.7743 (2)	1.00222 (10)	0.0491 (4)	
N4	0.54547 (9)	0.8708 (2)	0.89552 (10)	0.0576 (4)	
C1	0.36589 (10)	0.5949 (3)	0.24289 (11)	0.0516 (4)	
C2	0.31437 (9)	0.6359 (2)	0.17168 (10)	0.0416 (4)	
C3	0.24477 (9)	0.6629 (2)	0.17021 (10)	0.0401 (4)	
C4	0.21663 (10)	0.6392 (3)	0.23745 (11)	0.0492 (4)	
C5	0.61229 (10)	0.8655 (3)	0.93644 (11)	0.0475 (4)	
H5A	0.6506	0.9180	0.9212	0.057*	
C6	0.68163 (15)	0.7392 (3)	1.06347 (14)	0.0661 (7)	
H6A	0.7213	0.7962	1.0491	0.099*	
H6B	0.6896	0.6096	1.0689	0.099*	
H6C	0.6767	0.7889	1.1126	0.099*	
C7	0.55032 (15)	0.7161 (4)	1.00398 (16)	0.0803 (8)	
H7A	0.5380	0.6474	1.0434	0.096*	
C8	0.50654 (15)	0.7773 (5)	0.9379 (2)	0.0919 (10)	
H8A	0.4575	0.7592	0.9231	0.110*	
C9	0.52021 (13)	0.9711 (3)	0.82143 (13)	0.0750 (7)	
H9A	0.5573	1.0547	0.8150	0.090*	
H9B	0.4792	1.0439	0.8248	0.090*	
C10	0.5000	0.8508 (4)	0.7500	0.0559 (7)	
H10A	0.4602	0.7731	0.7532	0.067*	0.50
H10B	0.5398	0.7731	0.7468	0.067*	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.03490 (18)	0.03872 (19)	0.03238 (19)	-0.00051 (11)	0.00419 (13)	-0.00245 (11)
S1	0.0380 (2)	0.0625 (3)	0.0377 (2)	0.00491 (19)	0.00505 (18)	0.0005 (2)
S2	0.0379 (2)	0.0577 (3)	0.0397 (3)	0.00376 (18)	0.00789 (19)	0.00350 (19)
N1	0.0665 (12)	0.1072 (17)	0.0468 (10)	0.0188 (12)	-0.0018 (9)	0.0070 (11)
N2	0.0691 (11)	0.0954 (14)	0.0488 (10)	0.0063 (11)	0.0220 (9)	0.0090 (10)
N3	0.0537 (9)	0.0483 (9)	0.0413 (9)	-0.0086 (7)	0.0039 (7)	-0.0020 (7)
N4	0.0479 (9)	0.0663 (10)	0.0497 (9)	-0.0038 (8)	-0.0049 (7)	-0.0074 (8)
C1	0.0493 (10)	0.0627 (11)	0.0406 (9)	0.0054 (9)	0.0065 (8)	-0.0019 (9)
C2	0.0462 (9)	0.0413 (8)	0.0344 (8)	0.0003 (7)	0.0042 (7)	-0.0017 (7)
C3	0.0459 (9)	0.0382 (8)	0.0346 (8)	-0.0023 (7)	0.0069 (7)	-0.0022 (7)
C4	0.0503 (10)	0.0539 (10)	0.0423 (10)	0.0019 (8)	0.0091 (8)	0.0012 (8)
C5	0.0454 (9)	0.0498 (10)	0.0423 (10)	-0.0046 (8)	0.0012 (7)	0.0019 (8)
C6	0.0740 (15)	0.0568 (13)	0.0549 (14)	0.0002 (10)	-0.0086 (12)	0.0085 (9)

supplementary materials

C7 C8 C9 C10	0.0686 (16) 0.0446 (12) 0.0783 (15) 0.0481 (14)	0.112 (2) 0.140 (3) 0.0643 (13) 0.0592 (17)	0.0614 (15) 0.087 (2) 0.0611 (13) 0.0525 (16)	-0.0278 (15) -0.0210 (14) 0.0102 (12) 0.000	0.0177 (13) 0.0079 (13) -0.0238 (12) -0.0027 (12)	0.0053 (14) 0.0053 (19) -0.0046 (11) 0.000
Geometric param	neters (Å, °)					
Ni1—82 ⁱ		2,1603 (5)	C2—C	3	1 356 (3)	
Ni1—S2		2.1603 (5)	C3—C4		1.424 (3)	
Ni1—S1		2.1732 (4)	C5—H5A		0.9300	
Ni1—S1 ⁱ		2.1732 (4)	С6—Н	6A	0.9600	
S1—C2		1.7334 (18)	С6—Н	6B	0.9600	
S2—C3		1.7369 (17)	С6—Н	6C	0.9600	
N1—C1		1.140 (2)	C7—C8	3	1.334 (4)	
N2—C4		1.143 (3)	С7—Н	С7—Н7А 0.9300		0
N3—C5		1.316 (2)	С8—Н	C8—H8A 0.9300		0
N3—C7		1.356 (3)	С9—С	10	1.500	(3)
N3—C6		1.466 (3)	С9—Н	9A	0.970	0
N4—C5		1.318 (2)	С9—Н	9B	0.970	0
N4—C8		1.364 (4)	C10—C	C9 ¹¹	1.500	(3)
N4—C9		1.466 (3)	C10—H	110A	0.970	0
C1—C2		1.426 (2)	C10—H	110B	0.970	0
S2 ⁱ —Ni1—S2		180.00 (3)	N3—C	6—H6A	109.5	
S2 ¹ —Ni1—S1		88.018 (18)	N3—C	6—H6B	109.5	
S2—Ni1—S1		91.983 (18)	H6A—	С6—Н6В	109.5	
S2 ⁱ —Ni1—S1 ⁱ		91.983 (18)	N3—C	6—Н6С	109.5	
S2—Ni1—S1 ⁱ		88.017 (18) H6A—C6—H6C		—С6—Н6С 109.5		
S1—Ni1—S1 ⁱ		180.000 (17) H6B—C6—H6C		H6B—C6—H6C 109.5		
C2—S1—Ni1		103.27 (6)	C8—C	7—N3	106.2	(2)
C3—S2—Ni1		103.64 (6)	С8—С7—Н7А		С8—С7—Н7А 126.9	
C5—N3—C7		108.85 (19)	N3—C	7—Н7А	126.9	
C5—N3—C6		125.85 (19)	9) C7—C8—N4		C7—C8—N4 108.8 (2)	
C7—N3—C6		125.3 (2)	C7—C8	3—H8A	125.6	
C5—N4—C8		106.8 (2)	N4—C	8—H8A	125.6	0 (10)
C5—N4—C9		124.5(2)	N4—C	9C10	114.0	8 (19)
$N_{1} - C_{1} - C_{2}$		128.3(2) 177.7(2)	N4C	9—119А ГОНОЛ	108.7	
C_{3}		177.7(2) 121.79(17)	N4	9—H9B	108.7	
$C_{3} - C_{2} - S_{1}$		121.79(17) 120.62(13)	C10—0	С9—Н9В	108.7	
C1 - C2 - S1		117.55 (14)	H9A-	С9—Н9В	107.6	
C2—C3—C4		123.12 (16)	C9C	10—C9 ⁱⁱ	108.3	(3)
$C_2 = C_3 = S_2^2$		120.34 (14)	C9-C	10 C) 10—H10A	110.0	
C4-C3-S2		116.53 (14)	Co ⁱⁱ	10H10A	110.0	
N2-C4-C3		177 4 (2)	ری <u>(</u> رو_ر	10—H10R	110.0	
N3 - C5 - N4		109 30 (10)	$10) \qquad \qquad$			
N3_C5_H5A		105.37 (17)	U9 —U		100.0	
N4—C5—H5A		125.3	1110A-	C10—1110D	100.4	
		120.0				

Symmetry codes: (i) -x+1/2, -y+3/2, -z; (ii) -x+1, y, -z+3/2.

